

City of Norfolk
City-wide Coastal Flooding Study
Presentation to
Storm Water Working Group

February 29, 2012

Kevin Smith Associate Engineering Geologist Fugro Atlantic

Introduction and Purpose

- During previous meeting (November 29, 2011) citizens requested more information regarding coastal flooding study
- Presentation provides overview of study
- City-wide coastal flooding study initiated in 2007
 - Part of City's ongoing efforts to proactively address flooding
- Project team comprised of:
 - Civil, coastal, and geotechnical engineers
 - Geologists, oceanographers, and GIS analysts
 - Moffatt & Nichol and Timmons Group

February 29, 2012 Slide #2 www.fugro.com

Why Flooding Occurs

In Norfolk, flooding is caused by rainfall, tides or a combination of both

Precipitation (Rainfall) Flooding

Rain intensity exceeds capacity of the storm drain system

Tidal (Coastal) Flooding

- Caused by tidal variations and storm surges
- Directly related to land elevation and proximity to coastline
- Can exacerbate rainfall flooding

Rainfall and Tidal Flooding

TYPICAL SUBMERGED OR PARTIALLY SUBMERGED STORM WATER OUTFALL

Tailwater phenomena causes rainfall and tidal flooding to be inextricably linked.

February 29, 2012 Slide #4 www.fugro.com

Relative Sea Level Rise

Since 1930, relative mean sea level at Sewells Point has been documented to have risen 14.5 inches

• Rate of sea level rise has been increasing over time and is projected to continue increasing

February 29, 2012 Slide #5 www.fugro.com

Relative Sea Level Rise

- Relative Sea Level = Global Sea
 Level Rise + Land Subsidence
 - Among Scientists there is a wide range of future sea level rise projections
- Mid-range future projections of Relative Sea Level Rise for Hampton Roads are 2 - 4 inches per decade

February 29, 2012 Slide #6 www.fugro.com

Land Subsidence

- Land subsidence is occurring faster in Hampton Roads than surrounding areas
- Subsidence causes
 - Chesapeake Bay Impact Crater
 - Groundwater withdrawal
 - Glacial rebound
 - Compaction of sediments
 - Reclaimed land
 - Other issues

Chesapeake Bay Impact Crater and Elevation Model

Impact Crater from Powers and Bruce (1999); DEM (NOAA, 2004); Inset map HRPDC

February 29, 2012 Slide #7 www.fugro.com

- Comprehensive study
 - Installed tide gauges throughout city
 - Completed a City-wide assessment and began focused watershed evaluations to determine range of options that may be needed for effective flood relief

February 29, 2012 Slide #8 www.fugro.com

- Public Information, Notification and Education
- Land use options & Government policy
 - Zoning regulations
- Development requirements
 - Minimum floor elevations for house
 - Minimum floor elevation for garages and ancillary structures
 - Flood proofing vulnerable elevations
 - Foundation, structural, mechanical design requirements
- Property Purchase
- Infrastructure Approaches

Brick cover over water proofing

February 29, 2012 Slide #9 www.fugro.com

Infrastructure Approaches

- Infrastructure
 - Structures and barriers
 - Tide gates with pump stations
 - Earth berms (and raised roads)
 - Floodwalls & bulkheads
 - Storm water system upgrades
 - Retention ponds
 - Increase drainage system capacity
 - Raising of structures and roads

February 29, 2012 Slide #10 www.fugro.com

Tide Gate Type Options

- Evaluated multiple types of tide gates, including:
 - Steel gates
 - Obermeyer gates (hybrid of above steel gate with bladder)
 - Inflatable dams
- Considerations Included:
 - Navigation requirements (affects length and depth)
 - Tidal flow
 - Initial capital and future O&M costs
 - Reliability

February 29, 2012 Slide #11 www.fugro.com

- Choices based on:
 - Geographic setting
 - Areas with natural constriction points
 - Watersheds which lend themselves to specific, basin-wide mitigation options
 - Areas of recurring damage

February 29, 2012 Slide #12 www.fugro.com

Watershed Characterization

Development Characteristics		The Hague	Pretty Lake	Mason Creek	Ohio Creek (Spartan Village)
Size	Acres	900	2,545	3,234	277
	% of City	3%	7%	9%	1%
Parcels		2,373	7,721	6,680	781
Assessed Value	\$M	1,624	1,812	1,604	1,949
	% of City	7%	8%	7%	8%
Structures (Primary structures does not include detached out buildings/garages)	Total	1,512	7,737	6,293	584
	Residential	1,044	7,280	6,146	523
	% of City	1%	9%	7%	0.6%
	Non- residential	468	457	147	61
Existing Tide Surge Control		No	No	Yes	Yes

February 29, 2012 Slide #13 www.fugro.com

- Engineering (hydrologic and hydraulic) analyses
 - Moffatt & Nichol (PL, MC, H) and Timmons Group (OC)

Storm water Infrastructure Model

Increasing Flood Depth

Tidal surge:

- 1) Increases area of rainfall flooding
- 2) Increases depth of rainfall flooding and
- Holds water upstream longer and increases duration of flooding

February 29, 2012 Slide #14 www.fugro.com

Evaluation Process

- GIS-based approach using FEMA and USACE procedures
- Modeling includes structures & contents utilizing the City parcel database and field verification was performed
- Not included in model are ancillary structures, vehicles, displacement, loss of use and city infrastructure

February 29, 2012 Slide #15 www.fugro.com

Evaluation Process

- Project cost estimates
 - Include ancillary structures (tie-in walls)
 - Pump stations
 - Long-term operation and maintenance
- Benefit cost analysis
 - Compares benefit of project to cost of project
- Recommend options based on
 - Benefit cost analysis
 - Initial cost and operation/maintenance cost
 - Reliability

February 29, 2012 Slide #16 www.fugro.com

The Hague: Project Elements

- Capital Project to protect against coastal flooding (tidal surge):
 - Tidal Barrier (floodwall) to protect against tidal surge
 - Tide gate if navigation access required
 - Pump station to remove rainfall runoff when gate closed
 - Closure walls or berms across where land surface is low around basin/watershed perimeter

- TUGRO

The Hague - Recommended Mitigation Approach

Project Elements

- Floodwall
- Tide Gate
- Pump Station
- Closure Walls

February 29, 2012 Slide #18 www.fugro.com

CAPITAL PROJECT intended to protect against rainfall runoff (Area protected from Tidal Surge by Existing Tide Gate (operated by Navy) will require:

- Pump station to remove rainfall runoff when gate closed
- New Storm Culvert beneath Navy

OPTIONAL APPROACH

- Peripheral walls (or berms) where land surface is low around Creek
- Structure elevation
- Future building requirements

February 29, 2012 Slide #19 www.fugro.com

Ohio Creek: Project Elements

Capital Project Phased as Follows:

- Phase 1 Buyout of most vulnerable properties -50 year option
- Phase 2 Pump Station (reduces rainfall impact during tidal surge) -100 year option
- Phase 3 Box Culvert (improves drainage system)

February 29, 2012 Slide #20 www.fugro.com

Pretty Lake – Project Elements

Capital Project intended to protect against both coastal flooding (tidal

surge) and rainfall runoff will require:

Tidal Barrier (floodwall)
 structure to protect against inundation from tidal surge

- With tide gate to preserve navigation access required
 - Tide gate needs foundation
- Pump station to remove rainfall runoff when gate closed
- Raise roads where land surface is low around basin/watershed perimeter

February 29, 2012 Slide #21 www.fugro.com

Project Elements

- Floodwall
- Tide Gate
- Pump Station
- Road Raise

Design Basis

- o 100 year storm
- Note storm water system capacity will cause local flooding for rainfall in excess of 2 year return period

Capital Cost

- o \$50M to \$100M (2011 Dollars)
- B / C ratio: 2.1

February 29, 2012 Slide #22 www.fugro.com

Current Activities

- Preliminary design of watershed areas
- Evaluating mitigation options for other watersheds
- City-wide coastal flood risk assessment

Preliminary Design

February 29, 2012 Slide #23 www.fugro.com

Other City Activities

- Developing a strategic plan for the entire City that will guide the application of resources city-wide to address storm water and flooding
- Met with Congressmen Bobby Scott and Scott Rigell and their staff to discuss the City's flooding issues and the federal government's role
- Conducted tour of coastal flood prone areas of the City for the U.S. Army Corps of Engineers, District, Division and Headquarters officials
- Work with the City's delegation to have the State Legislature begin studying and addressing this issue
- Attempting to reallocate existing funds to begin work on some immediate projects at the federal level

February 29, 2012 Slide #24 www.fugro.com

Continuing Actions

- Pursue technical and political solutions to this complex issue
- Continue to seek engagement of state and federal resources
- Increase citizen knowledge and understanding
- Mitigate damages and losses from flooding
- Seek out and listen to experts for creative mitigation options
- Adapt land use, zoning and building regulations

February 29, 2012 Slide #25 www.fugro.com

Thank You for the Opportunity to contribute to the City of Norfolk's Future

February 29, 2012 Slide #26 www.fugro.com